Weighted Ensemble Methods
Serial Methods
WeightedEnsemble.run_we — Functionrun_we(E₀, B₀, sampler, n_we_steps; n_save_iters = 1)Run a serial WE simulation, optionally returning the ensemble at each, step with
Arguments
E₀- initial particle ensembleB₀- initial bin data structuresampler- WE sampler functions data structuren_we_steps- number of steps in the WE run
Optional Arguments
n_save_iters = 1- save the ensemble and bins everyn_save_itersiterations. Setn_save_iters=n_we_stepsto only save the final values.
WeightedEnsemble.run_we_observables — Functionrun_we_observables(E₀, B₀, sampler, n_we_steps, observables)Run a serial WE simulation, returning the values a specified fucntion, f, along the trajecotry.
Arguments
E₀- initial particle ensembleB₀- initial bin data structuresampler- WE sampler functions data structuren_we_steps- number of steps in the WE runobservables- Tuple of scalar observable functions for the ergodic average
WeightedEnsemble.run_we! — Functionrun_we!(E, B, sampler, n_we_steps)Run an in place serial WE simulation with
Arguments
E- particle ensembleB- bin data structuresampler- WE sampler functions data structuren_we_steps- number of steps in the WE run
Multithreated Methods
These methods make use of multithreading in the mutation step.
WeightedEnsemble.trun_we — Functiontrun_we(E₀, B₀, sampler, n_we_steps; n_save_iters = 1)Run a multithreaded WE simulation, optionally returning the ensemble at each, step with
Arguments
E₀- initial particle ensembleB₀- initial bin data structuresampler- WE sampler functions data structuren_we_steps- number of steps in the WE run
Optional Arguments
n_save_iters = 1- save the ensemble and bins everyn_save_itersiterations. Setn_save_iters=n_we_stepsto only save the final values.
WeightedEnsemble.trun_we_observables — Functiontrun_we_observables(E₀, B₀, sampler, n_we_steps, observables)Run a multithreaded WE simulation, returning the values a specified fucntions, observables, along the trajecotry.
Arguments
E₀- initial particle ensembleB₀- initial bin data structuresampler- WE sampler functions data structuren_we_steps- number of steps in the WE runobservables- Tuple of scalar observable functions for the ergodic average
WeightedEnsemble.trun_we! — Functiontrun_we!(E, B, sampler, n_we_steps)Run an in place multithreaded WE simulation with
Arguments
E- particle ensembleB- bin data structuresampler- WE sampler functions data structuren_we_steps- number of steps in the WE run
Distributed Methods
These methods make use of distributed computation in the mutation step via pmap.
WeightedEnsemble.prun_we — Functionprun_we: Run a parallel WE simulation, optionally returning the ensemble at each step. This performs the mutation steps in parallel, and assumes a worker pool has already been created.
Arguments
E₀- initial particle ensembleB₀- initial bin data structuresampler- WE sampler functions data structuren_we_steps- number of steps in the WE run
Optional Arguments
n_save_iters = 1- save the ensemble and bins everyn_save_itersiterations. Setn_save_iters=n_we_stepsto only save the final values.
WeightedEnsemble.prun_we_observables — Functionprun_we_observables: Run a parallel WE simulation, optionally returning the ensemble at each step. This performs the mutation steps in parallel, and assumes a worker pool has already been created.
Arguments
E₀- initial particle ensembleB₀- initial bin data structuresampler- WE sampler functions data structuren_we_steps- number of steps in the WE runobservables- Tuple of scalar observable functions for the ergodic average
WeightedEnsemble.prun_we! — Functionprun_we!: Run an in place parallel WE simulation. This performs the mutation steps in parallel, and assumes a worker pool has already been created.
Arguments
E- particle ensembleB- bin data structuresampler- WE sampler functions data structuren_we_steps- number of steps in the WE run